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An analysis is made of the flow within a three-dimensional explosion, or spark, 
created in a gas absorbing energy from a steady conical beam of radiation with 
nearly spherical symmetry. The radiation, typically from an array of lasers with 
a common focus, is assumed to be very intense, and absorbed immediately behind 
an outwardly advancing strong shock. The resulting self-similar flow has 
previously been studied for spherical symmetry; somewhat improved calcula- 
tions for that case are presented here. 

Departures of the laser power from spherical uniformity, which would result 
from practical problems of arrangement, are conveniently represented by an 
ascending series of Legendre polynomials in the polar angle. For non-uniformities 
of small amplitude, first-order perturbations of the flow field are analysed in 
detail. Self-similarity is shown to be retained, for zero counter-pressure and power 
constant with time. 

For the first five harmonics in power distortion, the resulting fourth-order 
system of equations is solved numerically for profiles of velocity components, 
density and pressure, and for shock shape. Results are presented graphically. 
These solutions are singular near the focus, but are nevertheless fully determined. 
I n  the limit of large wavenumber, the core of the flow has vanishing tangential 
velocity and pressure perturbations, and hence the governing equations are only 
of second order, except presumably in a boundary layer appearing near the shock. 

Study of the nonlinear case of large wavenumber along the axis of symmetry 
shows that the singularity a t  the focus reflects the existence of a ‘forbidden zone ’ 
whose extent depends on the degree of asymmetry. It is argued that this zone is 
one within which diffusional processes must dominate. 

1. Introduction 
Recent efforts in the field of nuclear fusion together with the development of 

very powerful pulsed lasers underline the importance of laser breakdown of 
matter. Early research in this field, by Meyerand & Haught (1963) and by Damon 
& Tomlinson (1963), concerned the breakdown of gases to create plasma 
explosions. Experimental evidence is abundant (see the review of Demichelis 
1969) and deals with three distinct phases of the phenomenon: initiation of break- 
down, growth of the plasma during the laser pulse and &ally, decay of the plasma 
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after termination of the pulse. The initial breakdown in a gas seems to occur by 
multi-photon ionization followed by cascade ionization. The final decay of the 
spark after the pulse has been explained by Panarella & Savic (1968) in terms of 
non-spherical blast-wave theory under the ‘locally radial ’ approximation. 

As for the intermediate phase, the interaction of laser radiation with the 
developing plasma, three mechanisms have been suggested, all essentially one- 
dimensional. The ‘ radiation-supported detonation wave ’ was proposed by 
Ramsden & Savic (1964) and later improved by Raizer (1965)) Daiber & 
Thompson (1967) and Key (1969). Several ‘breakdown wave’ mechanisms, 
based on various breakdown criteria, were proposed by Raizer (1965), 
Ambartsumyan et al. (1965), Canto, Reuss & Veyrie (1965) and Alcock et aZ. 
(1968). Finally, a ‘radiation transport wave ’ was also discussed by Raizer (1965). 
The appropriate theoretical model seems to be determined by the physical nature 
of the plasma and the time history of the laser pulse. 

Although most experiments reported to date have relied upon a singly focused 
laser resulting in very oblong sparks, it  is clear that a spherical arrangement using 
a battery of lasers will increase the energy input into the plasma. Indeed, quite 
a few experiments are now in progress using optical systems which split an 
original beam and redirect each component in a different direction; up to 27 
beams will, it is hoped, be generated and focused in this way. The fluid-mechanical 
consequences of such a nearly spherical focused power deposition constitute the 
subject of this paper. 

The theory of spherical sparks has been independently developed by 
Champetier, Couairon & Vandenboomgaerde (1968) and Wilson & Turcotte 
(1970). Both groups made use of self-similarity in the case of constant power 
addition, and numerically integrated the flow equations in a velocity- 
temperature plane. They found that the wave front is an overdriven detonation 
wave (subsonic conditions behind the front). 

In  the present paper, such a spherically uniform power addition is slightly 
distorted as a function of the polar angle. The resulting theory applies directly 
only to exporiments with several coaxial conical beams with a common focus, but 
slightly different intensities. The laser radiation is assumed to be completely 
absorbed in a narrow layer following the leading shock wave; the plasma is con- 
sidered to be a perfect gas with zero viscosity and heat conduction, and thermal 
reradiation is neglected in comparison with the laser power input. Self-similarity 
of the flow within the shock envelope is obtained if the pressure ahead of the 
shock is negligible compared with that behind, and if the power does not vary 
with time. For laser-generated explosions of solid targets, the plasma expands 
into a vacuum; thus, the physical concepts are the same during the plasma-laser 
radiation interaction phase and the present analysis is applicable to that case also. 
It may be remarked that the Newtonian approximation y = 1 is not useful for the 
case of power constant in time, in contrast to the blast wave of constant energy. 

Given the power perturbation, we obtain the shape of the spark, and the 
conditions just behind the front are derived. The inner flow is expressed as a 
Fourier series, and radial profiles of all physical variables are given for 
harmonics 1-4. 



Nearly spherical constant-power detonation waves 483 

Focus 
FIGURE 1. Geometrical arrangement of a laser-induced spark. 

The analysis brings out the existence of a focal singularity, namely the 
presence of a ‘forbidden region’ near the origin. This rather surprising result 
seems to be connected with the geometry of the perturbation. It is suggested 
that this singularity could probably be removed by introduction of diffusion to 
smooth out the very strong angular gradients which otherwise exist near the 
origin. 

2. Governing equations 
In  this section, hydrodynamic equations and boundary conditions are 

presented for a general geometry. Figure 1 shows the laser heat flux J con- 
verging to a focus 0, with cylindrical symmetry about the horizontal axis. The 
wave front comprises a curved shock wave followed immediately by a region in 
which the energy carried by the laser photons is absorbed. Conditions in the 
undisturbed medium are marked ‘ 0’ and conditions just behind the absorption 
layer are marked ‘ d  ’. Also, D is the normal component of the wave-front velocity 
and 

Assuming a narrow absorption layer (such as in air at  normal density and very 
high temperature) and neglecting radiation pressure and energy, we obtain from 
conservation of mass, momentum and energy a set of boundary conditions to be 
applied a t  d :  (2.1a,b) 

(2 . lc )  

is the gas velocity behind the front; cr is the angle between D and J .  

und = W1 -f), Pa = ~ o l f ,  
pa = PO +poD2(1 -f), 

p is the density, p is pressure, y is the ratio of specific heats at  constant pressure 
and volume, and MD is the front Mach number based on the velocity D and sound 
speed in the undisturbed medium. It may be noted that the present energy- 
exchange model implies a ‘radiation parameter’ (y2 - 1) J cos c/p0 D3 of order 
unity, driving the shock. The plus sign in (2.1 d )  corresponds to an underdriven 
wave which degenerates into the trivial solution f = 1 when J = 0, and the 
minus sign gives an overdriven wave (shock wave when J = 0). The Chapman- 
Jouguet wave speed results when the radical in (2.1 d )  is set equal to zero. In  the 
model adopted here, only overdriven or ChapmanJouguet waves are physically 
acceptable, because heat is added in the absorption layer following the leading 
shock; in that case, the flow must remain subsonic with respect to the wave front. 
Unlike the ordinary blast wave, the present flow will have a density ratio f which 

31-2 



484 Y .  H .  George and P. K .  Moore 

remains a function of the wave velocity and front location as M,-+OO. This 
feature makes boundary conditions rather difficult to apply in the present 
situation. 

The hydrodynamic equations are those for time-dependentl compressible, 
inviscid, isentropic flow. r and 8 are the spherical radius and polar angle, t is time 
and u,. and u, are the radial and tangential velocity components. 

The laser radiation is characterized by its power distribution II(8, t ) .  The heat 
flux J is then given by J = II/r& where r,(O,t) is the wave-front radius. Self- 
similarity is obtained ahen the pressure po in the undisturbed medium can be 
neglected and IT(8, t )  is of the form 

we, €1 = II cg(@, (2.2) 

where IT, is constant (in fact, the requirement for self-similarity is less stringent: 
nL can be a power of time; the present analysis, however, has been limited to 
power constant in time) and g(8) is an arbitrary function of the polar angle 8. 
The similarity variable h is readily obtained from familiar dimensional argu- 
ments, or by requiring boundary conditions (2.1) to be time independent: 

with n = 8, and A = r 
A€* ' 

h r -  (2-3) 

a is a constant to be obtained as part of the solution in such a way that h = 1 
corresponds to the boundary of the spherically symmetric spark. Since no new 
length is introduced by the angular distribution g(8)  it is not surprising that the 
self-similar variables are similar to those for the purely spherical case of 
Champetier et aZ. and Wilson & Turcotte. If the wave front is defined as a function 
of 6, A, E h(6), 

and physical variables are made non-dimensional as follows, 

u,.(r, 6, t )  = nAtn-lTl(hl 6), uo(r, 0, t )  = nAtn-lW(h, O ) ,  

PO-, 8, €1 = p o ~ ( h ,  o), w, 8, t )  = po(n~ tn - l )wh ,  e), 
then the flow equations read 

n-1 W 2  PA 
h R  

v--+- = 0, LV+- 

n-1 vw Po 
L W + y W + h + D  = 0, 

n-1  v w, w 
LP+~---P++P ~ + + - + - + - ~ o t e  

12 ( h h h  

where L is the linear differential operator 

a w a  L = (V-h)-+-- 
ah A as. 

(2.4) 

(2.5a, b) 

(2.5c, d )  

(2.6a) 

(2.6b) 

(2 .6~)  

(2.6d) 
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Boundary conditions (2.1) at h = h(@, expressed in self-similar form, appear as 

v, = (1 - f  ) h( 1 + h'2/h2)-1, (2.8 a)  follows: 

1 Y + l  l+h" 
f = - (. - [ 1 - 2 2 j q j z  ( h")]+) Y + l  

( 2 . 8 b )  

( 2 . 8 ~ )  

(2.8 d )  

(2 .8e)  

where h' is the derivative of h(6). 
Given g(B), the problem is now to solve the nonlinear system of partial differ- 

ential equations (2.6) subject to boundary conditions (2.8) applied at a location 
h(8) which is unknown a priori. 

3. Small perturbation of a spherical detonation wave 
A nearly spherical power distribution is considered, with E representing the 

departure from spherical symmetry. The perturbation is developed in a series of 
Legendre polynomials Yk of argument COB 0: 

where the A, are constants. Exclusion of the zeroth harmonic ensures that the 
total power is the same as for the purely spherical case. 

The wave-front perturbation is assumed to have the same form, to first order 
in E :  Q, 

h(e) = i + E gk(cos e)  x,, (3.2) 
k = l  

where the x k  are unknown constants to be determined as part of the solution. 
Substituting (3.1) and (3.2) into (2.8u-e), the boundary conditions are expanded 
in series in integer powers of E ;  this is possible because the zeroth-order 
(spherically symmetric) wave front is overdriven, and the radical in (2.8e) is 
therefore non-zero. 

Consistency suggests similar expansions for the various physical variables 
throughout the flow field. To first order in E ,  

(3.3a) 

(3.3 b )  
m 

R(A, 0) = R ( O ) ( A )  + €  ~k(COse)&,(h), (3 .34  
k = l  

og 

P(h, 6 )  E P'O'(h) + E I;; g k ( C 0 s  0) pk(h). (3.3d) 

Although the expansions are strictly correct at  the boundary, there is no 
guarantee that they are uniformly valid for all values of A; indeed, it will be 
shown that they become singular in the neighbourhood of h = 0. 

k = l  
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Zeroth-order solution 

Collecting the O(1) terms in the flow equations (2.6) and boundary conditions 

( VCO) - A )  B(0Y + R(O) VCOY + 2Ho) V(O)/h = 0, (3.4a) (2.8) gives 

(3.4b) 
n-1 1 - yco) + ( J7(0) - A )  V(0Y + - PCOY = 0, 

n, R(O) 

p)( 1) = 1 -f'O), B(O)( 1)  = 1 p ,  (3.5a, b)  

P(0)(1) = 1 -p, (3 .54  

where a prime stands for d ldh  andJP(O is defined as 

in which a remains to be determined. 
In  effect, these equations have been integrated numerically by Wilson & 

Turcotte (1970). Their results were obtained by matching with the leading term 
of a Taylor series in A ,  near the origin. The accuracy of this procedure proved 
insufficient for the present purpose; the solution must be more fully described 
near the origin if it  is to serve as the basis €or the calculation of first-order 
perturbations. 

In  order to recalculate the zeroth-order solution, we numerically integrate the 
system of differential equations (3.4) outwards from the origin towards the shock 
boundary. To move away from the origin, sufficiently detailed expansions in 
powers of h are needed. With 

p = A" (3 .7)  

one finds 

I "  

For the particular value y = 5, 
2 n - 1  4 a ----=- 

O -  37 n 15' 

f y r - O = -  a + 2  34 
a,-1 11' 

(3.8a, b )  

( 3 . 8 ~ )  

(3.9) 

(3.10) 

a not being an integer makes all variables singular near h = 0 in the sense that 
derivatives of high enough order are always unbounded. As in classical blast- 
wave theory, the density goes to zero and the pressure remains bounded, and 
therefore the temperature is infinite at  the focus. Expansions (3.8) turn out t o  
contain only two free parameters, b, and co; other aj, b, and cj were computed 
from b, and co by George (1972). Since the unknown constant a appears in the 
three shock boundary conditions (3.5) their number is in effect reduced to two. 
Initial guesses are made for b, and co, equations (3.4) are integrated to the shock, 
and a standard linear correction scheme is used to modify the initial choices in 
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FIGURE 2. Velocity, density and pressure profiles of a spherically symmetric 
spark when y = $. 

order to satisfy the two boundary conditions; finally, a is computed. The 

b, = 0.9300, c,, = 0.1731, u = 1-990. (3.11) results are 

The velocity, density and pressure profiles are plotted on figure 2 versus 
non-dimensional distance A. Presented in this form, these results are in good 
agreement with those of Wilson & Turcotte (1970) except near the origin, where 
the present velocity is about 10 % lower than theirs. 

A brief comparison can be made with constant-energy blast waves. In  the 
present case, boundary conditions (3.5) explicitly contain the wave-front 
velocity. This simply reflects the difference in the mechanism which drives the 
leading shock wave: in a blast wave, the energy, initially released at the focus, is 
redistributed in the flow field, whereas in the present case, energy is deposited 
right behind the shock, pushing it forward. 

The density profile, in particular, is much less steep near the boundary than 
that of a blast wave; indeed, when y = 1 all profiles remain perfectly smooth, as 
shown by George (1972), and there is no Newtonian layer of concentrated mass 
near t,he shock. The reason, again, is that across an absorption layer the density 
ratio is not inversely proportional to y - 1 and thus can remain finite when y --f 1. 
From another point of view, particle trajectories do not become similarity lines 
in this case as they do in the blast wave; therefore mass is continuously flowing 
into the inner region of the plasma, which excludes the idea of a Newtonian layer. 
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On that basis, the ‘locally radial’ flow approximation as used, for instance, by 
Laumbach & Probstein (1969) in their study of blast waves in an exponential 
atmosphere is ruled out in the present case. 

First-order solution 

Collecting the O(s) terms in (2.6) and (2.8) yields a linear system of differential 
equations and boundary conditions. Each harmonic is treated separately, the 
calculation being made for individual values Ak = 1. Linear superposition can 
then be used to derive the effect of any particular power perturbation. 

For harmonic E ,  the flow equations read 

( 3 . 1 2 ~ )  

( 3.12 c) 

+ ( 
The boundary conditions are transferred to the location h = 1 by a Taylor 
expansion: 

(3.13a) 

(3.13b) 

Vk( 1)  = - K + [ 1 -f‘O’ + 5K - V(O)’( 1 )] x,, 
ll.’k( 1) = - (1  -f‘O’) x,, A 

(3.13c) 

P,( 1)  = - K + [2( 1 -f@)) + 5K - P‘”‘( l)] x,, (3.13d) 

where K is the constant 
1 

(3.14) 

The linear homogenous system (3.12) is integrated outwards from A = 0 to 
A = 1. Starting this numerical procedure requires expansions valid in the 
neighbourhood of the origin. Specializing (3.12) to small h is done by retaining 
only the first term in the expansions of the coefficients which depend on the 
zeroth-order results (3.8). A solution is then sought of the form 

- A”, $ - A”, 2 - ~m+a--3,  P hm+a-1. (3.15) 

An algebraic fourth-order indicia1 equation is obtained for m. The roots for the 
first ten harmonics are listed in table 1. A definite pattern emerges for increasing E :  
the first root mk is positive and increasing; the pair of complex conjugate roots 
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Harmonic 
k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Roots 

mk 

1-1 14 
1-399 
1-941 
2.719 
3.619 
4.569 
5.540 
6.522 
7.510 
8.510 

m r h  * irnw 

- 0.6253 & 0.55001 
--0.2491& 0.7055i 
- 0.0137 & 0.66912 

0.0998 f 0-5965i 
0.1510 & 0.54131 
0,1767 f 0.50471 
0.1912 & 0.48021 
0-2002 &0-4632& 
0.2061 5 0.45111 
0.2103 0.44211 

4 
- 3.500 
- 4.537 
- 5.550 
- 6.555 
- 7.557 
- 8.558 
- 9.559 
- 10.56 
- 11.56 
- 12.56 

TBLE 1. Roots of the indicia1 equation corresponding to the 
focal singularity (y = 5) 

mrk & imi, has an increasing real part, first negative, then positive, but always 
remaining less than 1 ; the fourth root rn; is negative and decreasing. 

The complete expansions possess four terms: 

%(A) = A,,hmk + B,,Amfk+imik + B&h"+k-iW +Dlkhmk, 

$,(A) = A,, hmk + B,,A%k+iW + B:, h?W-imik + D2, hmm'., 

( 3 . 1 6 ~ )  

(3.16b) 

fik(h) = h"-3(A3,hmk +B,,h*k+iWk +B* 3 k hmTk-im' tk + D,, A";), (3.16 c) 

$k(h) = h'-1(A4,hmk + B4khmrk+imik + B&Amrk-imik +D,,hmi), (3.16 d) 

where * stands for ' complex conjugate '. The A's and D's are real constants, and 
the B's are complex constants. Note that the two middle terms in (3.16) combine 
into real oscillating functions of argument miklnA. Four real constants are 
arbitrary, namely A,,, Re (B,,), Im (B,,) and L)lk;  all other constants are related 
to these (George 1972). 

Boundary conditions (3.13) contain the unknown x k ,  and therefore can be 
reduced to three given conditions. One solution of the linear fourth-order system 
of differential equations must therefore be dropped. D,, and hence all the D's are 
set equal to zero on the physical grounds that the corresponding solution yields 
a source of mass, momentum and energy at the origin, for all harm0nics.t 
Furthermore, the singularity corresponding to mi gets stronger for increasing k, 
which is incompatible with a more and more spherically symmetric geometry. 

The system (3.12) is integrated using a fourth-order Runge-Kutta numerical 
scheme. Taking advantage of the principle of superposition of linearly inde- 
pendent solutions the three free constants Alk, Re (Blk) and Im (B,,) are 
determined so as to satisfy boundary conditions. 

The results describing the wave-front position and physical conditions behind it 
are presented in table 2 for individual harmonics 1-5. The magnitude of the shape 
perturbation is given by X ,  (see (3.2)). All the X ,  are positive, indicating that an 
increase in laser power creates an outward displacement of the wave front, and thus 

t This is demonstrated in $4. 
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k P,(v)  (v = cost)) x k  Z V k  wk(l) Z R h  ZP,  

1 v  0.1903 0.0491 0,0875 - 0.1297 0.1366 
2 i(3v2-1) 0.1754 - 0.0164 0.0806 - 0.3325 0'0642 
3 i(5v3-3v) 0.1589 - 0.0891 0.0730 - 0.557 - 0.0160 
4 Q(34v4 - 3 0 ~ '  + 3) 0.1429 - 0.1586 0.0656 - 0.773 - 0.0939 
5 Q(63~'- 70v3+ 1 5 ~ )  0'1288 -0.2217 0.0591 -0.965 -0.1625 

TABLE 2. Spark shape and values of velocities, density and pressure behind 
the wave front, to first order in E .  

Power distribution: 
Wave front : 
Radial velocity behind the wave: V, = 1 - f ' o ' + ~ B k ( c o s B ) Z ~ , .  
Tangential velocity behind the wave: TVa = -s(d9, (~osB)/d0)  k(1). 
Density behind the wave : 
Pressure behind the wave : 

g(0) = (4n)-l[l + ~ B , ( c o s O ) ] .  
h(0) = 1 + E ~ ~ ( c o s o ) x k .  

R, = l / f ' O '  + EB,(COS~) ZR,. 
Pa = 1 - f ' O ' + F P , ( C O S 0 ) Z p g .  

f") = 0.5404, 1-f"' = 0.4596, l l f ' O '  = 1.8504. 
ZVl, V,( 1) + V'"'( 1) x, ; 

ZRli and Zp, are similarly related to &,( 1) and $,( 1). 

an enhanced front velocity. The X ,  decrease for increasing k, which shows that 
the shape perturbation is less for a more evenly distributed power perturbation. 

The values of the radial velocity, tangential velocity, density and pressure 
behind the absorption front are also listed in table 2 .  The density perturbation 
a t  the front is negative in all cases, reflecting the fact that the influence of the 
shape perturbation dominates over that of the power perturbation. The absolute 
values of the radial velocity, density and pressure perturbations a t  the front 
increase with k ;  in fact, George has shown that they tend to asymptotic values 
for k- t co .  As an indication, %( 1) is displayed on figure 3(b) for k = 1 to k = co. 
The perturbation in tangential velocity decreases with k as it should for an 
increasingly spherically symmetric geometry. 

The radial profiles of velocities, density and pressure perturbations are plotted 
on figures 3 (a)-(d) versus h from h = 0 to h = 1. Note that h = 1 is not exactly 
the physical boundary of the spark; the choice of A was made (see (2.3)) so that 
the radial and tangentialAvariables h and 8 remain independent of each other. 
The tangential velocity W, must be negative a t  the wave front, because of the 
requirement that the velocity be noryal to the front, and the properties of 
Legendre polynomials. Furthermore, apparently remains negative over the 
whole range of A. The density perturbation exhibits a change of sign from 
negative t o  positive a t  h = 0.3. 

Although the character of the singularity near the origin changes between 
harmonics 3 and 4 (for example, the velocities become oscillatory but bounded 
for harmonics 4 and greater, whereas they are oscillatory and unbounded for the 
first three harmonics), no drastic change in the profiles appears to take place. 

The limiting case of large wavenumber k+co is now examined. The original 
differential system (3.12) reduces from being fourth order to second order and the 
indicia1 equation describing the focal singularity yields only a pair of complex 
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FIGURE 3. (a) Radial velocity, (b)  tangential velocity, (c)  density 
and (d) pressure perturbation profiles for harmonics 1-4. 
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Asymptote, equation (3.19) 
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FIGURE 4. Complex conjugate roots of the indicial equation near the focus as 
a function of the harmonic number k.  

conjugate roots. When k -+ 00, all quantities oscillate rapidly in the angular 
co-ordinate, giving rise to large 8 derivatives: 

d[.GPk(cos 8)]/d6 N O(k) when k+ co. (3.17) 

The prop? new ordering of physical variables is that %(A)  and Ai,(h) remain O( l ) ,  
whereas &(A) and &(A) become O( l / k 2 ) .  Defining 

@k(h) = k-a@Jh), &(A) E Pi,@) (3.18a, b) 

equation ( 3 . 1 2 ~ )  becomes O( 1/k2) compared with (3.12a, b, d), which remain O(1). 
It is easily seen that this system is only of second order. Specializing to the 
neighbourhood of the origin and looking for a solution of the type (3.15), 8 
second-order algebraic equation is obtained, the roots of which are 

A A 

mr, k imfm = 0.227 f 0.400i. (3.19) 

The real and imaginary parts of the pair of complex conjugate roots of the 
complete fourth-order indicial equation are plotted on figure 4 for harmonics 1-20 
as well as the asymptotic value for k = co given by (3.19). The asymptotic values 
are quite closely approached for k > 10. It is seen that the real part mrk always 
remains less than unity. 

In  the limit Ic -+ 00, the second-order system of differential equations cannot be 
expected to satisfy the three boundary conditions. Indeed, a boundary layer is 
called for in the neighbourhood of the wave front, of thickness O(l/k). In that 
region, the proper ordering of physical variables, compatible with the boundary 
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conditions, is that c, 8, and pk are 0(1), but W, and h are to be transformed as 

(3.20 a, b )  

Matching between the two regions appears feasible, but is not carried out in the 
present study. 

h 

follows: h 

W, = k-lFk, h = 1 - k-1X. 

4. Discussion of the flow singularity near the radiation focus 
Although expansions (3.16) completely describe the singularity of the linear 

solution near h = 0,  a better understanding of the physical situation can be 
obtained by computing fluxes of mass, axial momentum and energy across a 
small sphere surrounding the focus. For example, consider the mass flux Q across 
a sphere of radius A, < 1 : 

Q = 2~p~nA3t3n-1 R VA; sin 8 d8. (4.1) 
/OH 

Expansions (3.3) are substituted into the integral, and use is made of the 
properties of Legendre polynomials. The O(1) contribution is simply that of a 
spherically symmetric spark; there is no O(e) contribution. In  order to compute 
the O(e2) term, the corresponding differential equations have been solved for 
small h by George (1972) 

If the solution containing D s  in (3.16) had been retained, the leading term in 
the O(e2) mass flux would have been 

Q ,., A;mt+a-3 (4.2) 

where k is the highest harmonic present. It is seen that, even for k = 1, the 
exponent of A, is negative ( - 5.091), thereby indicating a strong source of mass. 
Similar arguments can be used to show that a source of axial momentum O(E) 
and a source of energy O(e2) are also implied. Therefore, because such sources are 
not contemplated in the present problem, the solutions containing D’s should be 
rejected. 

On the other hand, when the D’s are set equal to zero, the leading term in the 
O(e2) flux has an amplitude 

Q m A$%kf”-3, (4.3) 

where k is the lowest harmonic present. The exponent is always positive, so that 
no source of mass exists in this case. The same is true for O(e) axial momentum 
and O(e2) energy. 

The remaining singularities of both A and B terms can be mathematically 
described in terms of singular perturbations. By inspection of the higher order 
systems of differential equations, an expansion of the mass flux in powers of e can 
be obtained, say for the harmonic k 

&(A,) = ~ , A ~ + l [ l +  S ~ A ~ ( * ~ - ~ ’ Q ~ ( A ~ )  

+ e3A3~?k-’)Q3(hO) + s4h$*k-1)Q,(h,) + ...I. (4.4) 
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In  this expression, Q2,  Q3 and Q4 are purely oscillating functions of A, whose 
arguments are respectively 2m,,ln A,, 3mi, In A, and 4m,, In A. Series (4.4) is 
uniformly convergent in Poincark's sense outside a small focal region of size 

(4.5) 

Note that this region of non-uniformity exists for all harmonics since m,, is always 
less than 1, and is larger for the smaller wavenumbers. 

One must now ask whether the singular behaviour just described is due purely 
to linearization, or rather to neglected physical effects such as counter-pressure 
ahead of the shock or diffusion. We begin by considering the first possibility, and 
attempt to assess the importance of the nonlinear terms in the full inviscid 
equations (2.6) near the origin. For convenience, the dependent variables are 
slightly modified by extracting the leading part of the spherically symmetJric 
solution: 

V = a,A+v, W = w, (4.6a, h )  

1/R = A-("-l'(h/b, + s), ( 4 . 6 ~ )  

P = Co+h"-1(c1A+@). ( 4 . 6 4  

The equations for v, w, s and @ are listed in appendix A. 
For illustrative purposes, a somewhat arbitrarily chosen model equation is 

discussed. Retaining only the linear and nonlinear radial velocity terms in the 
r-momentum equation (A 2) one gets 

rAvx + v = vvx, 
where I? and A' are defined as 

(4.7) 

The model equation (4.7) is not 'correct) in any specific sense; rather, it  is an 
illustrative combination of linear and nonlinear terms which appear in the full 
equations. We shall see that an understanding of the effect of the nonlinear 
term vvA, in this equation will lead to a more systematic approach. 

Equation (4.7) has a simple general solution which contains an arbitrary 
constant. This we choose in such a way that the part of the solution corre- 
sponding to the linear terms in (4.7) gives v to be of order 6 .  A direct comparison 
with the small perturbation solution is then possible. The solution reads 

(4.9) 

with C an arbitrary constant. The first two terms alone give the inverse-power 
relation v N A'-lIr, which corresponds to the linear perturbation solution already 
found for 6 (see (3.16)). The final term of (4.9) is due to the nonlinear right side 
of (4.7)) and (with C > 0) has the effect of setting a minimum value of A' below 
which there is no solution, namely 

A' = c ~ + +  (r + i ) - i w ,  

= ~ri(r+i)r-r/(r+i)[c(r + i)]ii(r+i). (4.10) 
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Thus, including the nonlinear term in (4.7) reveals a ‘forbidden zone’ near h = 0, 
which is of extent erJ(r+l) = €0.647, and into which the inviscid solution cannot 
be continued. In  the linear approximation, this phenomenon is only indirectly 
represented, by a power-law singularity at  the origin. 

The foregoing ideas may be followed up more rigorously, as follows. In  the large 
wavenumber limit, the ordering (3.18) is carried over to the full equations, con- 
sidering that w - O(l/rC) and $ - O ( l / k 2 ) ;  further, the system (A 1)-(A4) is 
specialized to the polar axis of symmetry, on which 8 derivatives of v and s vanish; 
finally, only the small h region is of interest. Accordingly, (A 4) reduces to @ = 0 
provided that v and w, lead over which may be verified a posteriori. 
Equations (A 1)  and (A 2) then become decoupled and elimination of s provides 
the following nonlinear second-order equation: 

CLC n -  1 
(a- 2) -l w + (a, - 1 ) 2 h 2 w A ,  + (a,, - 1)  

b l  
+ 2(a, - 1) hvw,, + v2vAA + (a, - 1) Avf + vvf 

All nonlinear terms in (4.11) are of the same order in the region of non-uniformity 
of the small perturbation equations and thus must be retained. 

We now ask if solutions of this more complicated, second-order equation also 
show a ‘forbidden zone’ as suggested by the model equation (4.7). Phase-plane 
methods are appropriate for this purpose, and we introduce the definitions 

6 = lnh, (4.12 a) 
v = Ax&), dx,/dl = x 2 ( [ ) .  (4.12 b,  c) 

Equation (3.21) then becomes 

where the N’s are numerical constants listed in appendix B. In principle, (4.13) 
should be integrated in the phase plane taking singularities into account; the 
physical location can then be obtained from (4.12a, c). However, sufficient 
information for our purpose is furnished by local solutions. 

Equation (4.13) possesses five singular points: (0, 0)) which is afocus (the corre- 
sponding solution for v reproduces the linear small perturbation solution (3.16) 
when k = a); (N5,0), ( -ao, 0) and ( q a o ) ,  which are saddle points; and the 
singularity S(N,, 00). In  the neighbourhood of 8, (4.13) is readily integrated: 

x2 = 4 / ( X 1 - N 1 ) ,  (4.14) 

with C, an arbitrary constant. The corresponding solution for v is 

( W - N , ~ ) ~  = h2(C,lnh+C,), (4.15) 

with C, and C, arbitrary constants. This result is interpreted as follows, with the 
aid of figure 5 : singularity S is associated with points (v,, A,) on the straight line 
v = NIA; the integral curves going through such a point behave, in its immediate 
neighbourhood, like 

2, - v, = Nl(h -A,) f [C2h,(h -As)]+. (4.16) 
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FIQURE 6 .  Sketch oomparing singular fist-order perturbation solution for radial velocity 
(dashed line) and the nonlinear solution (solid line) near the wave focus, for k = m. 

They cross the line w = N,h with an infinite slope, and furthermore, an integral 
curve coming from the region h > As turns back towards that region. A forbidden 
domain this appears: h < A,. The family of integral curves (4.16) has two para- 
meters, namely the position As at which the crossing occurs and the curvature of 
the square-root function (related to 0.J. This allows matching with the small 
perturbation solution when Ic-fm, which also depends on two parameters. As 
a rough approximation to the size of the forbidden domain, the linear solution 
can be continued until it crosses the line w = NIA at 8’; one obtains A, = O(Pg1). 
This result is in agreement with the ordering arrived at  by other perturbation 
considerations (see (44, for k = 00). 

Thus, the suggestion provided by the model equation (4.7) is confirmed. Of 
course, the existence of a forbidden domain has been established only on the axis 
of symmetry in the limit of large wavenumber, but this feature is thought likely 
to apply for all 8 directions and wavenumbers, with a forbidden region all around 
the focus whose extent depends on wavenumber, perhaps being larger for smaller 
wavenumbers, as suggested by (4.5). 

This situation is by no means exceptional for inviscid flows; a Prandtl-Meyer 
expansion flow around a corner of an angle larger than the critical angle also 
possesses a forbidden region. In  the present case, the origin of this difficulty must 
be sought in the basic physical assumption made to derive the flow equations 
(2.6). Self-similarity requires neglecting the counter-pressure po as well as 
neglecting viscosity and heat conduction. It may be shown? that infinite 
temperature a t  the focus of a spherically symmetric wave still prevails when the 
counter-pressure is introduced as a small perturbation in the boundary condi- 
tions. It is believed that the infinite temperature situation is responsible for the 
singularity in the asymmetric case. Indeed, each particle retains the entropy it 
got when it was first processed by the absorption layer, but there always exists 

t A note to this effect is in preparation. 
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near the focus a region where particle velocities are very low. The fluid particles 
there have high entropies because they were processed at  early times, but have 
different entropies according to the angle at  which they crossed the front. Very 
strong angular gradients therefore exist near the focus; in a more refined physical 
model, these would be smoothed out by diffusion processes including radiative 
transfer. The present situation bears a certain analogy to the entropy singularity 
encountered in the so-called Ferri layer next to the surface of a cone in supersonic 
flow a t  an angle of attack (Ferri 1950). 

5. Concluding remarks 
A linear small perturbation scheme is apparently valid for the major part of 

this flow; in particular, the perturbed shape of the spark and changes in physical 
quantities behind the energy absorption layer are predicted for small asym- 
metry. Linear perturbations lead, however, to a singularity with a strong 
oscillating character in the neighbourhood of the focus; the lines of constant phase 
for all first-order variables are in fact logarithmic spirals around the origin. The 
meaning of this singularity has been elucidated by considering the full nonlinear 
flow equations. Analysis for the large wavenumber limit has revealed the exist- 
ence of a forbidden domain which cannot properly be taken into consideration 
within the scope of the inviscid theory used here. A more refined model should 
includediffusion processes, such aselectron conduction, which would tend to create 
a uniform, high temperature core. Then, of course, self-similarity would no longer 
be valid, and distinctions between early and late times would need to be made. 

Some of the present conclusions can be directly applied to constant-energy 
blast waves developing into an atmosphere with an angular distribution of 
density; say, p = po[ l  +dG(O)]. The singularity appearing in a linear small 
perturbation scheme is easily identified: with n = Q and y = + the expansions 
(3.8) remain valid, with a. = $. and 01 = y-. The roots of the indicia1 equation €or 
the first-order singularity exponent m are, for the first harmonic, 

mi = - 6.42. 

The nonlinear theory still prevails and yields a forbidden region. Therefore a 
detailed investigation of the region around the origin seems to be needed in the 
case of non-spherical constant-energy blast waves. 

m, = 1.67, mrl + imal = - 2.0 _+ 1.96i, 

This research was supported by N.A.S.A. under Grant NGL-33-010-042, 
monitored by Dr John C. Eward, Lewis Research Center. 

Appendix A. Nonlinear equations near the origin 
Substitution of (4.6) into the flow equations (2.6) yields 

vs 1 s 
h b h  wse + (a, - 1) (As, - s)  + vsA - (a - 1) - - ( + -) @ = 0, (A 1) - V + h  

a-2 
b, 

32 F L M  61 
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Appendix B. Constants of phase-plane trajectory near the origin 
The numerical values of the various constant N's are 

N 1 -  - - ( ~ 0 -  1) = 0.733, A?, = 4--~r. = 0.909, 

2a0 - I/% 
N3 = - = 1.244, 

4-01. 
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